欢迎光临
免费的PDF电子书下载网站

实时耦联动力试验的大规模数值模拟研究与应用 PDF下载

编辑推荐

“清华大学优秀博士学位论文丛书”(以下简称“优博丛书”)精选自2014年以来入选的清华大学校级优秀博士学位论文(Top 5%)。每篇论文经作者进一步修改、充实并增加导师序言后,以专著形式呈现在读者面前。“优博丛书”选题范围涉及自然科学和人文社会科学各主要领域,覆盖清华大学开设的全部一级学科,代表了清华大学各学科*秀的博士学位论文的水平,反映了相关领域*的科研进展,具有较强的前沿性、系统性和可读性,是广大博硕士研究生开题及撰写学位论文的必备参考,也是科研人员快速和系统了解某一细分领域发展概况、*进展以及创新思路的有效途径。 ;

内容简介

本书系统阐述了实时耦联动力试验方法(RTHS)的基本原理与研究现状,以及基于清华大学实时耦联动力试验系统开展的一系列创新性理论研究与试验应用成果。 全书分为8章,包括绪论、基于双目标机的RTHS系统构建及验证、多自由度RTHS系统的时滞稳定性分析、不同数值积分算法的时滞稳定性和精度分析、调谐液柱阻尼器的减震性能研究、调谐液柱阻尼器在高层结构减震中的应用试验、调谐液体阻尼器关键问题研究、结论与展望。 本书可供结构抗震领域科研技术人员参考,也可作为水利工程、土木工程及相关专业师生的参考书。

作者简介

暂无

实时耦联动力试验的大规模数值模拟研究与应用 PDF下载

目录

目录
第1章绪论
1.1工程背景与研究意义
1.2实时耦联动力试验技术
1.2.1传统动力试验方法
1.2.2实时耦联动力试验
1.3实时耦联动力试验研究进展
1.3.1试验系统的发展
1.3.2数值积分算法
1.3.3时滞及时滞补偿算法
1.3.4时滞稳定性分析
1.3.5非线性数值子结构的求解
1.3.6试验应用
1.4调谐液柱阻尼器
1.4.1数值与试验研究
1.4.2工程应用
1.5本书的主要工作与创新点
1.5.1本书的主要工作
1.5.2本书的创新点

第2章基于双目标机的RTHS系统构建及验证
2.1引论
2.2清华大学RTHS系统
2.3双目标机RTHS系统构建
2.3.1数值子结构计算的任务分解策略及应用
2.3.2位移外插及内插策略
2.4双目标机RTHS系统的数值验证
2.4.1计算精度
2.4.2计算能力
2.5双目标机RTHS系统的试验验证
2.5.1单层钢架有限元地基模型
2.5.2试验结果
2.6基于双显式数值积分算法的时滞补偿法
2.6.1双目标机RTHS系统中的反馈力协调性问题
2.6.2补偿算法的提出及特性分析
2.6.3数值算例验证
2.6.4RTHS试验验证
2.7本章小结

第3章多自由度RTHS系统的时滞稳定性分析
3.1引论
3.2基于离散根轨迹法的时滞稳定性分析模型
3.2.1离散根轨迹法
3.2.2多自由度RTHS系统时滞稳定性分析模型
3.3两自由度结构的RTHS系统时滞稳定性分析
3.3.1失稳机理分析
3.3.2参数影响分析
3.3.3考虑不同时滞补偿算法的稳定性分析
3.4时滞稳定性的RTHS验证
3.4.1考虑有限元数值子结构及单源时滞
3.4.2考虑有限元数值子结构及多源时滞
3.5本章小结

第4章不同数值积分算法的时滞稳定性和精度分析
4.1引论
4.2不同数值积分算法在RTHS系统中的特性变化
4.2.1典型数值积分算法简介
4.2.2理论分析
4.3数值算法的时滞稳定性分析
4.3.1纯时滞条件下的时滞稳定性分析
4.3.2考虑时滞补偿的时滞稳定性分析
4.4数值算法的时滞精度分析
4.4.1基于数值模拟的精度分析
4.4.2基于离散根轨迹的精度分析
4.5数值算法时滞稳定性和精度的RTHS验证
4.6本章小结

第5章调谐液柱阻尼器的减震性能研究
5.1引论
5.2TLCD减震机理
5.2.1单自由度结构TLCD系统动力方程
5.2.2参数影响分析
5.3TLCD减震控制的RTHS验证
5.3.1试验思路
5.3.2试验模型
5.3.3结构TLCD系统的稳定性分析
5.3.4基于RTHS的TLCD减震试验
5.4基于RTHS的TLCD参数影响分析
5.4.1质量比
5.4.2结构阻尼比
5.4.3结构刚度变化
5.4.4地震加速度峰值
5.5MTLCD用于单自由度钢架的减震控制
5.6本章小结

第6章调谐液柱阻尼器在高层结构减震中的应用试验
6.1引论
6.2多自由度结构TLCD系统动力方程
6.2.1多自由度结构STLCD系统
6.2.2多自由度结构MTLCD系统
6.3足尺TLCD结构地基系统的RTHS试验方法
6.4试验模型
6.4.1九层Benchmark钢结构
6.4.2足尺TLCD模型
6.5STLCD控制的RTHS试验
6.5.1STLCD动力特性
6.5.2试验结果及分析
6.6MTLCD控制的RTHS试验
6.6.1MTLCD控制一阶振型响应
6.6.2MTLCD控制多阶振型响应
6.7考虑结构地基相互作用的RTHSTLCD试验
6.7.1试验框架
6.7.2考虑有限地基SSI效应
6.7.3考虑半无限地基SSI效应
6.8本章小结

第7章调谐液体阻尼器关键问题研究
7.1引论
7.2基于RTHS的TLD非线性刚度阻尼模型验证
7.2.1非线性刚度阻尼模型
7.2.2RTHS试验验证
7.3TLD几何尺寸效应影响研究
7.3.1考虑几何尺寸效应的试验结果
7.3.2考虑质量比尺的试验结果
7.4TLD与TLCD减震效果对比
7.4.1试验模型
7.4.2试验结果
7.5本章小结

第8章结论与展望
8.1主要研究成果和结论
8.2研究展望

参考文献在学期间发表的学术论文与研究成果致谢Contents实时耦联动力试验的大规模数值模拟研究与应用
Contents
Chapter 1Introduction
1.1Background and Research Significance
1.2RealTime Hybrid Simulation Technique
1.2.1Traditional Structural Dynamic Experiments
1.2.2RealTime Hybrid Similation
1.3Review of RealTime Hybrid Simulation
1.3.1Development of Experimental System
1.3.2Numerical Algorithms
1.3.3Time Delay and Compensation Methods
1.3.4DelayDependent Stability Analysis
1.3.5Nonlinear Numerical Substructure
1.3.6Application
1.4Tuned Liquid Column Damper
1.4.1Numerical and Experimental Study
1.4.2Practical Application
1.5Research Content and Highlight
1.5.1Research Content
1.5.2Highlight

Chapter 2Construction and Verification of RTHS System Based on Dual
Target Computers
2.1Introduction
2.2RTHS System in Tsinghua University
2.3Construction of RTHS System Based on Dual Target
Computers
2.3.1Task Splitting Strategy in Numerical Substructure
Analysis
2.3.2Displacement Extrapolation and Interpolation
2.4Numerical Verification
2.4.1Computational Accuracy
2.4.2Computational Capability
2.5Experimentional Verification
2.5.1Single FrameFinite Element Foundation Model
2.5.2Experimental Results
2.6Time Delay Compensation Method Based on Guiλ
Algorithn
2.6.1Incoordination between the Real and Desired
Feedback Forces
2.6.2The Proposed Time Delay Compensation Method
and Its Characteristics
2.6.3Numerical Verification
2.6.4RTHS Verification
2.7Summary

Chapter 3DelayDependent Stability Analysis of MDOFRTHS System
3.1Introduction
3.2Theoretical Model for Stability Analysis Based on
DiscreteTime Root Locus Technique
3.2.1DiscreteTime Root Locus Technique
3.2.2The Construction of Stability Analysis Model for
MDOFRTHS System
3.3DelayDependent Stability Analysis of 2 DOFs RTHS
System
3.3.1Instability Mechanism Analysis
3.3.2Parameter Impact Analysis
3.3.3Stability Analysis Considering Different TimeDelay
Compensation Methods
3.4RTHS Verification
3.4.1Finite Element Numerical Substructure with Single
Delay Source
3.4.2Finite Element Numerical Substructure with Multiple
Delay Source
3.5SummaryChapter 4Stability and Accuracy Investigation of Different Integration
Algorithms
4.1Introduction
4.2Characteristics of Different Integration Algorithms in RTHS
System
4.2.1Brief Introduction of CommonlyUsed Integration
Algorithms
4.2.2Theoretical Analysis
4.3DelayDependent Stability Analysis of Integration
Algorithms
4.3.1Consideration of Pure Time Delay
4.3.2Consideration of Time Delay Compensation
4.4DelayDependent Accuarcy Analysis of Integration
Algorithms
4.4.1Accuarcy Analysis Based on Numerical Simulation
4.4.2Accuarcy Analysis Based on DiscreteTime Root
Locus Technique
4.5RTHS Verification
4.6Summary

Chapter 5Seismic Performance Analysis of Tuned Liquid Column
Damper
5.1Introduction
5.2Absorption Principle of TLCD
5.2.1Dynamic Equation of SDOF StructureTLCD
System
5.2.2Parametic Analysis
5.3RTHS Verfication of Control Effect of TLCD
5.3.1Experimental Method
5.3.2Experimental Model
5.3.3Stability Analysis of StructureTLCD System
5.3.4RTHS of StructureTLCD System
5.4Parametic Analysis of TLCD Based on RTHS
5.4.1Mass Ratio
5.4.2Structural Damping Ratio
5.4.3Structural Stiffness
5.4.4Peak Ground Acceleration
5.5Application of Applying MTLCD to Control SDOF Frame
5.6Summary

Chapter 6Experimental Study of Dynamic Response of HighRise
Structure under TLCD Control
6.1Introduction
6.2Dynamic Equation of MDOF StructureTLCD System
6.2.1MDOF StructureSTLCD System
6.2.2MDOF StructureMTLCD System
6.3RTHS Method of FullScale TLCDStructureFoundation
System
6.4Experimental Model
6.4.1NineStory Benchmark Steel Structure
6.4.2FullScale TLCD Model
6.5RTHS of STLCD
6.5.1Dynamic Characteristic of STLCD
6.5.2Expeimental Results
6.6RTHS of MTLCD
6.6.1Using MTLCD Control the FirstOrder Modal
Response
6.6.2Using MTLCD Control the MultiOrder Modal
Response
6.7RTHSTLCD Considering SoilStructure Interaction
6.7.1Experimental Framework
6.7.2Considering SSI in Finite Foundation
6.7.3Considering SSI in SemiInfinite Foundation
6.8Summary

Chapter 7Key Issue Study of Tuned Liquid Damper
7.1Introduction
7.2RTHS Verfication of Nonlinear StiffnessDamping Model
for TLD
7.2.1Nonlinear StiffnessDamping Model
7.2.2RTHS Verification
7.3Investigation of Size Effect of TLD
7.3.1Experiment Considering Size Effect
7.3.2Experiment Considering Mass Ratio Effect
7.4Comparison of Control Effect Between TLD and TLCD
7.4.1Experimental Model
7.4.2Experimental Results
7.5Summary

Chapter 8Conclusion and Prospect
8.1The Main Research Result and Conclusion
8.2Prospect

前沿

一流博士生教育体现一流大学人才培养的高度(代丛书序)实时耦联动力试验的大规模数值模拟研究与应用
一流博士生教育
体现一流大学人才培养的高度(代丛书序)本文首发于《光明日报》,2017年12月5日。人才培养是大学的根本任务。只有培养出一流人才的高校,才能够成为世界一流大学。本科教育是培养一流人才最重要的基础,是一流大学的底色,体现了学校的传统和特色。博士生教育是学历教育的最高层次,体现出一所大学人才培养的高度,代表着一个国家的人才培养水平。清华大学正在全面推进综合改革,深化教育教学改革,探索建立完善的博士生选拔培养机制,不断提升博士生培养质量。
学术精神的培养是博士生教育的根本
学术精神是大学精神的重要组成部分,是学者与学术群体在学术活动中坚守的价值准则。大学对学术精神的追求,反映了一所大学对学术的重视、对真理的热爱和对功利性目标的摒弃。博士生教育要培养有志于追求学术的人,其根本在于学术精神的培养。
无论古今中外,博士这一称号都是和学问、学术紧密联系在一起,和知识探索密切相关。我国的博士一词起源于2000多年前的战国时期,是一种学官名。博士任职者负责保管文献档案、编撰著述,须知识渊博并负有传授学问的职责。东汉学者应劭在《汉官仪》中写道:“博者,通博古今;士者,辩于然否。”后来,人们逐渐把精通某种职业的专门人才称为博士。博士作为一种学位,最早产生于12世纪,最初它是加入教师行会的一种资格证书。19世纪初,德国柏林大学成立,其哲学院取代了以往神学院在大学中的地位,在大学发展的历史上首次产生了由哲学院授予的哲学博士学位,并赋予了哲学博士深层次的教育内涵,即推崇学术自由、创造新知识。哲学博士的设立标志着现代博士生教育的开端,博士则被定义为独立从事学术研究、具备创造新知识能力的人,是学术精神的传承者和光大者。
博士生学习期间是培养学术精神最重要的阶段。博士生需要接受严谨的学术训练,开展深入的学术研究,并通过发表学术论文、参与学术活动及博士论文答辩等环节,证明自身的学术能力。更重要的是,博士生要培养学术志趣,把对学术的热爱融入生命之中,把捍卫真理作为毕生的追求。博士生更要学会如何面对干扰和诱惑,远离功利,保持安静、从容的心态。学术精神特别是其中所蕴含的科学理性精神、学术奉献精神不仅对博士生未来的学术事业至关重要,对博士生一生的发展都大有裨益。
独创性和批判性思维是博士生最重要的素质
博士生需要具备很多素质,包括逻辑推理、言语表达、沟通协作等,但是最重要的素质是独创性和批判性思维。
学术重视传承,但更看重突破和创新。博士生作为学术事业的后备力量,要立志于追求独创性。独创意味着独立和创造,没有独立精神,往往很难产生创造性的成果。1929年6月3日,在清华大学国学院导师王国维逝世二周年之际,国学院师生为纪念这位杰出的学者,募款修造“海宁王静安先生纪念碑”,同为国学院导师的陈寅恪先生撰写了碑铭,其中写道:“先生之著述,或有时而不章;先生之学说,或有时而可商;惟此独立之精神,自由之思想,历千万祀,与天壤而同久,共三光而永光。”这是对于一位学者的极高评价。中国著名的史学家、文学家司马迁所讲的“究天人之际、通古今之变,成一家之言”也是强调要在古今贯通中形成自己独立的见解,并努力达到新的高度。博士生应该以“独立之精神、自由之思想”来要求自己,不断创造新的学术成果。
诺贝尔物理学奖获得者杨振宁先生曾在20世纪80年代初对到访纽约州立大学石溪分校的90多名中国学生、学者提出:“独创性是科学工作者最重要的素质。”杨先生主张做研究的人一定要有独创的精神、独到的见解和独立研究的能力。在科技如此发达的今天,学术上的独创性变得越来越难,也愈加珍贵和重要。博士生要树立敢为天下先的志向,在独创性上下功夫,勇于挑战最前沿的科学问题。
批判性思维是一种遵循逻辑规则、不断质疑和反省的思维方式,具有批判性思维的人勇于挑战自己、敢于挑战权威。批判性思维的缺乏往往被认为是中国学生特有的弱项,也是我们在博士生培养方面存在的一个普遍问题。2001年,美国卡内基基金会开展了一项“卡内基博士生教育创新计划”,针对博士生教育进行调研,并发布了研究报告。该报告指出:在美国和欧洲,培养学生保持批判而质疑的眼光看待自己、同行和导师的观点同样非常不容易,批判性思维的培养必须要成为博士生培养项目的组成部分。
对于博士生而言,批判性思维的养成要从如何面对权威开始。为了鼓励学生质疑学术权威、挑战现有学术范式,培养学生的挑战精神和创新能力,清华大学在2013年发起“巅峰对话”,由学生自主邀请各学科领域具有国际影响力的学术大师与清华学生同台对话。该活动迄今已经举办了21期,先后邀请17位诺贝尔奖、3位图灵奖、1位菲尔兹奖获得者参与对话。诺贝尔化学奖得主巴里·夏普莱斯(Barry Sharpless)在2013年11月来清华参加“巅峰对话”时,对于清华学生的质疑精神印象深刻。他在接受媒体采访时谈道:“清华的学生无所畏惧,请原谅我的措辞,但他们真的很有胆量。”这是我听到的对清华学生的最高评价,博士生就应该具备这样的勇气和能力。培养批判性思维更难的一层是要有勇气不断否定自己,有一种不断超越自己的精神。爱因斯坦说:“在真理的认识方面,任何以权威自居的人,必将在上帝的嬉笑中垮台。”这句名言应该成为每一位从事学术研究的博士生的箴言。
提高博士生培养质量有赖于构建全方位的博士生教育体系
一流的博士生教育要有一流的教育理念,需要构建全方位的教育体系,把教育理念落实到博士生培养的各个环节中。
在博士生选拔方面,不能简单按考分录取,而是要侧重评价学术志趣和创新潜力。知识结构固然重要,但学术志趣和创新潜力更关键,考分不能完全反映学生的学术潜质。清华大学在经过多年试点探索的基础上,于2016年开始全面实行博士生招生“申请|审核”制,从原来的按照考试分数招收博士生转变为按科研创新能力、专业学术潜质招收,并给予院系、学科、导师更大的自主权。《清华大学“申请|审核”制实施办法》明晰了导师和院系在考核、遴选和推荐上的权利和职责,同时确定了规范的流程及监管要求。
在博士生指导教师资格确认方面,不能论资排辈,要更看重教师的学术活力及研究工作的前沿性。博士生教育质量的提升关键在于教师,要让更多、更优秀的教师参与到博士生教育中来。清华大学从2009年开始探索将博士生导师评定权下放到各学位评定分委员会,允许评聘一部分优秀副教授担任博士生导师。近年来学校在推进教师人事制度改革过程中,明确教研系列助理教授可以独立指导博士生,让富有创造活力的青年教师指导优秀的青年学生,师生相互促进、共同成长。
在促进博士生交流方面,要努力突破学科领域的界限,注重搭建跨学科的平台。跨学科交流是激发博士生学术创造力的重要途径,博士生要努力提升在交叉学科领域开展科研工作的能力。清华大学于2014年创办了“微沙龙”平台,同学们可以通过微信平台随时发布学术话题、寻觅学术伙伴。3年来,博士生参与和发起“微沙龙”12000多场,参与博士生达38000多人次。“微沙龙”促进了不同学科学生之间的思想碰撞,激发了同学们的学术志趣。清华于2002年创办了博士生论坛,论坛由同学自己组织,师生共同参与。博士生论坛持续举办了500期,开展了18000多场学术报告,切实起到了师生互动、教学相长、学科交融、促进交流的作用。学校积极资助博士生到世界一流大学开展交流与合作研究,超过60%的博士生有海外访学经历。清华于2011年设立了发展中国家博士生项目,鼓励学生到发展中国家亲身体验和调研,在全球化背景下研究发展中国家的各类问题。
在博士学位评定方面,权力要进一步下放,学术判断应该由各领域的学者来负责。院系二级学术单位应该在评定博士论文水平上拥有更多的权力,也应担负更多的责任。清华大学从2015年开始把学位论文的评审职责授权给各学位评定分委员会,学位论文质量和学位评审过程主要由各学位分委员会进行把关,校学位委员会负责学位管理整体工作,负责制度建设和争议事项处理。
全面提高人才培养能力是建设世界一流大学的核心。博士生培养质量的提升是大学办学质量提升的重要标志。我们要高度重视、充分发挥博士生教育的战略性、引领性作用,面向世界、勇于进取,树立自信、保持特色,不断推动一流大学的人才培养迈向新的高度。

免费在线读


续表第1章绪论实时耦联动力试验的大规模数值模拟研究与应用第1章绪论〖1〗1.1工程背景与研究意义地震灾害是一种发生概率低、预测预报难、危害性极大的特殊自然灾害。地震灾害造成的人类生命财产损失绝大部分不是由地震活动本身引起的,而是由于各类人造建筑设施受损引起的,如房屋倒塌,水坝、桥梁、交通系统等生命线工程的破坏。同时,由地震引发的次生灾害如山体滑坡、雪崩、海啸、核泄漏等也对人类的生产生活甚至生命安全构成严重的潜在威胁。
中国的地震活动十分频繁,具有强震多发、震灾严重的特点。20世纪以来,中国大陆6级以上地震共发生过约457次,遍及28个省份,累计死亡人数达59万。由于人口稠密,且建筑抗震设防标准大多偏低,中国的抗震安全形势仍然十分严峻。
由于目前地震预报仍不能达到理想精度,在结构抗震设计过程中,通过提高结构自身的强度来获得较高的抗震能力是应对地震灾害、减小地震损失的最有效的手段。目前,基于数值模拟的结构动力计算[1]、基于监测控制的原型观测[2],以及结构动力试验[3,4]是进行结构抗震设计与研究的三大途径。结构动力试验通过制作结构模型,将真实地震记录作为输入荷载来对模型进行加载,能够有效地模拟结构在地震作用下的响应;此外,对于某些强烈非线性结构,数值模型通常难以精确模拟,此时足尺的结构动力试验是最为有效且可靠的研究方法。
另一方面,在水利和工民建工程建设领域,高耸结构的不断出现在推动国民经济发展、满足生产和生活需求的同时,也给结构在地震、风振作用下的安全性能带来了新的问题。除了改善结构受力特性,减震控制技术[5]也已经广泛应用于结构抗震设计中。调谐液柱阻尼器(tuned liquid column damper,TLCD)源自于调谐液体阻尼器(tuned liquid damper,TLD),是一种典型的被动控制技术[6],它具有减震原理简单、施工安装方便、减震效果良好等特点,特别适用于基频较低的高层结构振动控制。TLCD[7,8]体型通常为U形管状或者矩形状容器,分为水平段和竖直段两部分,水平段通常设置阀门或者格栅,通过调节其开度来控制阻尼效应。TLCD主要通过容器内液体运动产生的惯性力和水头损失引起的阻尼来耗散能量。TLCD中液体运动存在强烈非线性,目前采用的数值模型的精度仍有待检验,同时受限于常规动力试验中设备及比尺等因素的限制,缩尺TLCD试验也不能精确反映TLCD的非线性特性,因此进行足尺的TLCD试验很有必要。
近年来得到迅速发展的实时耦联动力试验(realtime hybrid simulation,RTHS)[911]是一种极具潜力的新型结构动力试验方法。RTHS的核心思路是把整体结构分解为数值/物理子结构来进行真实加载速率的混合试验。由于采用数值模型来模拟部分结构,因此诸如土结构相互作用(soilstructure interaction,SSI)的半无限地基可以采用一些成熟的模型进行数值模拟;而对另一部分非线性行为明显的结构部分进行物理试验,如类似TLCD的强非线性部分可以进行大比尺甚至足尺试验。因此,RTHS能够为传统结构动力试验中的一些难题提供一条新的解决途径。
图1.1常规振动台试验1.2实时耦联动力试验技术〖*1〗1.2.1传统动力试验方法常规振动台试验[12,13]是发展最早的一种动力试验技术,它的基本思路如图1.1所示。它是将整体结构制作成物理模型进行振动台加载试验,通过预设在模型上的传感器实时测量模型的响应,从而获得结构在地震作用下的动力性能。但是由于振动台的几何尺寸一般远小于原型结构尺寸,且其加载能力有限,因此常规振动台试验大多只能采用缩尺模型,无法完全、真实地获得结构的响应。目前振动台试验朝着加载多自由度化和台阵化[14]方向发展。
另外一种常用的试验方法称为拟动力(pseudodynamic,PSD)试验。PSD试验[1518]首次将模型试验和数值计算耦合起来,如图1.2所示,对于整体结构的动力方程,其惯性力和阻尼力项通过数值计算获得,而恢复力项通过准静态加载试验获得,以此往复循环,直至地震荷载结束。与振动台试验相比,PSD试验的优点在于对加载设备等的性能要求较低,使得足尺模型试验成为可能。但是由于其加载是一个准静态过程,试验所需时间可能远大于地震荷载时,因此无法研究与加载速率相关的结构响应。
图1.2PSD试验

实时耦联动力试验的大规模数值模拟研究与应用 pdf下载声明

本pdf资料下载仅供个人学习和研究使用,不能用于商业用途,请在下载后24小时内删除。如果喜欢,请购买正版

pdf下载地址

版权归出版社和作者所有,下载链接已删除。如果喜欢,请购买正版!

链接地址:实时耦联动力试验的大规模数值模拟研究与应用